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Topology optimization: a tool for the tailoring
of structures and materials

By O le Sigmund

Department of Solid Mechanics, Building 404, Technical University of Denmark,
DK-2800 Lyngby, Denmark (sigmund@fam.dtu.dk)

Is there a systematic way to minimize the weight of car and aeroplane parts? Is
there a way to design materials that expand transversely when pulled? To design
materials that shrink when heated? To design robots that are so small that they can
be mounted on the head of a pin?

The answer to all four questions is a¯ rmative; the method that solves the prob-
lems is called `topology optimization’. This method is based on complex computer
calculations. This paper describes the background of the method and shows a num-
ber of applications, ranging from the design of materials with `exotic’ properties over
microscopic robots to the design of large-scale satellite structures.

Keywords: optimization; numerical algorithms; ¯nite-element analysis;
material modelling; constitutive properties; mechanism synthesis

1. Introduction

Imagine yourself driving down a highway in your new car. You enjoy the car’s accel-
eration power, its spaciousness, its quietness, and, if you are ecologically oriented,
its great fuel economy. You drive over the new highway bridge leading to the air-
port. You are on the way to pick up friends arriving on the new Airbus from New
York.

You may not have thought about it before, but try to imagine how many hours
engineers have spent on designing your new car, the highway bridge or the Airbus!
It probably took several years of labour to design the bridge alone, not to mention
the hundreds of human-years of labour required to design the car and the aero-
plane.

Of course, engineers do not start from scratch when they begin to design a new
car. They bene­ t from the experience that car engineers have gained throughout the
century. They may even reuse the engine or the frame of an old car model. However,
due to the ever-increasing desire for lower fuel consumption and increased driving
comfort and safety, the engineers are faced with a dilemma. In order to decrease
the fuel consumption they must decrease the weight of the car, but, on the other
hand, increased driving comfort requires a bigger (and heavier) car and increased
crash-worthiness may also require extra structural weight to build strength into the
car frame. The same dilemma arises for the engineers of the aeroplane. The weight of
the aeroplane should be minimized in order to save fuel and carry more passengers,
but, at the same time, the aeroplane should be strong enough to withstand storms,
turbulence and hard landings.
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Figure 1. Four categories of structural optimization: (a) sizing optimization; (b) material opti-
mization; (c) shape optimization; and (d) topology optimization. The initial problems are shown
at the left-hand side and the optimal solutions are shown at the right.

Minimizing the weight of a structure while at the same time satisfying various
requirements on structural response, cost, aesthetics and manufacturing is a compli-
cated task. Experienced engineers may be able to come up with solutions that ful­ l
some of the requirements, but they will seldom be able to come up with the optimal
structure. In order to both optimize the structure and meet the given requirements,
the engineers must make use of computer programs.

A computer program for the optimization of mechanical structures will typically
consist of an analysis module and an optimization module. The analysis module is
used to calculate the structural response. It can, for example, be used to calculate the
maximum de®ection or the resonance frequency of the structure. The analysis module
is also used to perform a sensitivity analysis. This corresponds to calculating the
change in the structural response for a small design change. Based on the sensitivity
analysis, the optimization module calculates a change in the structural design that
improves the response. Typically, the optimal design is not achieved after only one
optimization step. Instead, the procedure, consisting of the analysis, the sensitivity
analysis and the optimization step, is repeated several times. After a number of
iterations, the design cannot be further improved and an optimal structure has been
reached. The development of e¯ cient computer programs for the optimization of
structures is a very active area of research. The research area is called structural
optimization.

Structural-optimization methods can be divided into four main categories. As an
example, consider the beam structure sketched in ­ gure 1. The goal is to design
the beam such that the sti¬ness is maximized for a given weight. The di¬erences
between the four structural-optimization categories mainly consist of the de­ nition
of the design variables. The design variables are the parameters that can be changed
during the optimization process.
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(a) Sizing optimization

A simple sizing-optimization problem is shown in ­ gure 1a. In the sizing-optimiza-
tion problem, the layout of the structure is prescribed; in this case, it is a truss
structure consisting of 31 truss elements. The cross-sectional area of each element
is a design variable. The truss structure is optimized by ­ nding the areas of the
individual truss elements that maximize the sti¬ness of the truss structure for a given
total weight. Sizing optimization is the simplest way of doing structural optimization.

(b) Material optimization

Instead of building the beam as a truss structure, it can be built as a layered
­ bre-composite. The goal here is to ­ nd the material composition that optimizes
the sti¬ness of the beam. In the beam design case, the design variables are the
orientations and thicknesses of the individual layers of the composite as sketched in
­ gure 1b.

(c) Shape optimization

An intuitive way to save weight is to drill circular holes in the structural com-
ponent. However, circular holes are not structurally e¯ cient. Stress concentrations
may be high along the edges of the holes and may cause the structure to break when
loaded. The structure may be improved using shape optimization. In this case, the
design variables are parameters that change the shape of the holes. The procedure
is illustrated in ­ gure 1c.

(d ) Topology optimization

The sizing-optimization, material-optimization and shape-optimization methods
all consider the optimization of structures with ­ xed topologies. The word topology
originates from the Greek word `topos’, which means landscape or place. In other
words, a structure with a ­ xed topology can be said to have a ­ xed `landscape’. In
the case of the sizing-optimization problem, the number and connectivity of the bar
elements were ­ xed. In the material-optimization problem, the structure was ­ xed
to be a simple beam. In the shape-optimization case, the number of holes in the
structure was ­ xed at six. It is quite obvious that the number of truss elements in
the ­ rst structure and the number of holes in the last structure will in®uence the
response and the weight of the structure signi­ cantly. This means that the topology
should be a variable in order to optimize its behaviour.

The above categorization of structural-optimization methods is rather idealized.
Often, structural-optimization methods consist of mixtures of the categories. In fact,
the topology-optimization method combines all four methods. The method not only
­ nds the optimal number of holes in a structure, but also ­ nds the optimal shape
of the holes and the optimal areas of the bars making up the structure. In special
cases, topology-optimization methods may also be used to ­ nd the orientations and
thicknesses of ­ bre layers in the optimal structure.

When the computer-based topology-optimization method was ­ rst introduced
by Bends½e & Kikuchi (1988), it was intended for the minimum-weight design of
structural components. Since then, the topology-optimization method has gained
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widespread popularity in academia and industry, and it is now being used to reduce
weight and optimize performance of automobiles, aircraft, space vehicles and many
other structures. Recently, the method has also been applied to a number of other
design problems. Examples are the design of tailored `exotic’ materials with counter-
intuitive properties, such as negative Poisson’s ratios (materials that expand trans-
versely when pulled) and negative thermal-expansion coe¯ cients (materials that
shrink when heated). Other applications include the design of transducers for under-
water sound detection, car parts for crash-worthiness, medical implants and Micro-
ElectroMechanical Systems (MEMSs) for use in hearing aids, air-bag sensors and
micro-robots.

A short introduction to the topology-optimization method and its mode of oper-
ation will be demonstrated with examples in x 2. Applications of the topology-
optimization method to the design of a satellite structure, materials with negative
Poisson’s ratio and negative thermal-expansion coe¯ cients, and to the design of a
microscopic robot will be discussed in xx 3{5.

2. The topology-optimization method

The development of the theory behind the topology-optimization method dates back
to the work of Michell (1904), who set up the conditions for optimality of load-
carrying structures. Since Michell’s pioneering work, engineers and mathematicians
have worked on re­ ning the theories. Based on the theoretical work, Bends½e and
Kikuchi founded the computer-based topology-optimization algorithm.

The topology-optimization method solves the most general structural-optimization
problem of distributing a given amount of material freely in the design space such
that performance is optimized. The design of an aeroplane ®oor support beam is
used to illustrate the procedure (­ gure 2).

The ­ rst step in the topology-optimization algorithm is de­ nition of the design
domain. The design domain or the space that the structure is allowed to occupy can
be restricted for various reasons. For example, the height of the design domain for
the aeroplane beam from ­ gure 2a is restricted by the passenger cabin from above
and by the baggage space from below.

The next step in the topology-optimization algorithm is to de­ ne the load and
support conditions that will in®uence the design of the structure. In the case of the
aeroplane beam, the main load comes from the weight of seats and passengers. If the
beam is situated between the wings, it will also be subject to a load from the weight
of the wings and the aerodynamic forces acting on them. The support conditions are
de­ ned by the points where the beam is attached to the aeroplane fuselage. Simpli­ ed
load and support conditions for the aeroplane beam are shown in ­ gure 2b.

When the design domain has been speci­ ed and the load and support conditions
have been de­ ned, the response of the structure must be analysed. The analysis
of the structural response is carried out by dividing the structure into numerous
small elements called ¯nite elements, as seen in ­ gure 2c. While the response of a
geometrically complex structure can be di¯ cult to calculate, very simple equations
can be set up for a small and geometrically simple ­ nite element. By collecting the
simple equations for each element into one big system of equations, the response of the
whole structure can be calculated. The method of dividing the structure into small
simple elements and ­ nding the global response by combining the simple equations
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Figure 2. Design of an aeroplane ° oor support beam using the topology-optimization method.
(a) De¯nition of the design domain (grey area); (b) de¯nition of load and support conditions;
(c) discretization and iteration history; and (d) ¯nal post-processed design.

is called ¯nite-element analysis. Using ­ nite-element analysis, one can determine
structural responses such as sti¬ness, resonance frequency, maximum stress level,
impact and thermal responses, and many other structural characteristics.

The ­ nite-element analysis is the basis for improving the structural response. One
result of ­ nite-element analysis is the stress distribution in the structure. Some parts
of the structure may be highly stressed and some parts may only experience low
stresses. An intuitive way of optimizing the structure is to add material to areas
with high stresses and to remove material from areas with low stresses. In fact, many
optimization algorithms are based on this intuitive idea. However, this approach will
fail for more complex load conditions. Instead, a sensitivity analysis must be carried
out. The sensitivity analysis determines the changes in structural response for a small
change in each design variable. Based on the sensitivity analysis, the optimization
module determines the change in design variables that improves the response as much
as possible.

As discussed in x 1, structural-optimization methods di¬er from each other in the
way that the design variables are de­ ned. In the case of the topology-optimization
method, the design variables describe the density of material in each ¯nite element.
In other words, one may consider the design domain as a black and white television
screen divided into a lot of small pixels (or ­ nite elements). By turning material on
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and o¬ in each pixel, one can produce a picture of the optimal structure. In practice,
grey pixels corresponding to elements with porous material are allowed during the
design process, but only black and white pixels corresponding to material or no
material elements are left in the ­ nal design.

The iterative design procedure is illustrated in ­ gure 2. Before the ­ rst iter-
ation, the beam is discretized by 5400 ­ nite elements. The load is assumed to
be a single load at the centre of the beam. The beam is supported in the lower
left- and right-hand corners and the available amount of material is distributed
evenly in the design domain. Then the iterative procedure is started. It is seen
that after 10 iterations some material has been moved to the upper and lower
parts of the beam where the stresses are larger. After 30 iterations the optimal
structure is roughly outlined, and after 50 iterations the optimal structure has been
found.

As described above, the implementation of the topology-optimization method
sounds fairly simple. However, di¬erent numerical and theoretical challenges arise
during the process. These challenges shall not be described in detail here, but one
of them should be brie®y mentioned, namely the problem of mesh dependency. The
mesh-dependency problem can be described as follows: the more elements that are
used to discretize the structure, the more details will appear in the optimal struc-
ture. In fact, the very best structure will be a structure consisting of an in­ nitely
­ ne grid of closely spaced beams. A structure with a very complex grid of beams is
in most cases impractical for economical and geometrical reasons. The structure will
be expensive to manufacture and, at least for the aeroplane beam example, it will be
impossible to run control cables and electric cables through the holes. To prevent the
appearance of very small structural details, one can use ­ ltering or perimeter-control
techniques.

(a) Michell’s optimal structures

As mentioned in x 1, Michell was the pioneer of structural optimization. In his
paper from 1904, he set up conditions for optimality of simply loaded structures.
One of the conditions is that: `A more general class of (optimal) frames: : : consist
of those whose bars,: : : form curves of orthogonal systems’. Using this simple rule,
Michell was able to construct several optimal structures, two of which are shown in
­ gure 3. In the ­ rst example, a single vertical load is to be suspended between two
supports. Using his basic conditions and geometrical intuition, Michell came up with
the optimal design shown in ­ gure 3a. Another of Michell’s examples is shown in
­ gure 3b. Here, a single load has to be transferred to a circular support. Common to
both examples is that all bars making up the optimal structures meet each other at
right angles.

A way of testing a computer-based topology-optimization program is to solve
Michell’s basic examples and compare the resulting topologies with his theoretically
developed designs. The topology-optimized solutions to Michell’s two examples are
shown in parts (c) and (d) of ­ gure 3, respectively. It is seen that the numerically
obtained topologies are very similar to Michell’s predictions.

Now one may ask: why spend a lot of work on the development of a computer pro-
gram if one can read a century-old paper and ­ nd the solution to the design problem?
The answer is that Michell’s method only works for very simple load conditions. The

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Topology optimization 217

(d)(c)

(a) (b)

Figure 3. Michell’ s optimal layouts: (a) Michell’ s optimal design for a single load with two sup-
ports; (b) Michell’ s optimal design for a single load with a circular support; (c) and (d) topol-
ogy-optimized solutions.

analytical method fails for multiple load conditions, for dynamically loaded struc-
tures, and for problems involving modelling in multiple physical domains. Examples
of structures that cannot be designed using analytical methods will be given in the
following sections.

3. Design of a satellite

Skilled engineers may be able to come up with e¯ cient designs for geometrically
simple structures. An example of a geometrical complexity that goes beyond the
abilities of engineers is the design of a small satellite structure.

The Danish government is sponsoring a small satellite programme with the aim
of launching a satellite with scienti­ c mission goals every ­ fth year. One of the
proposals for the next launch is a small satellite that can investigate the physics
behind gamma-ray bursts appearing in distant galaxies. Physicists and astronomers
are disagreeing on the source of the gamma-ray bursts, but there is agreement that
the gamma-ray bursts release energies that are bigger than any previously known
energy releases. An average of one burst can be detected per day with the strongest
signal appearing in the ­ rst few minutes after the burst. The release of gamma rays
decays to a non-detectable signal in ca. 24 h. The satellite should, therefore, be able
to detect the burst and turn its telescope towards the source as fast as possible.

To solve its mission, the satellite will be equipped with four wide-angle cameras
that can search the whole space for gamma-ray bursts. Once one of the cameras
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telescope
topology optimized structure

(c)

instrument boxes
wide-angle cameras
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Figure 4. Design of a small satellite. (a) Design domain and instrumentation;
(b) topology-optimized support structure; and (c) support structure with instrumentation.

detects a burst, the satellite will orient its telescope towards the source and record
the signal. In addition to the four cameras and the telescope, the satellite will be
equipped with electronic instruments for controls and communication, batteries and
solar panels. The size of the satellite is limited to 60 60 80 cm3 and the weight
is limited to 80 kg. The small size of the satellite makes it possible to launch it as a
`secondary’ payload, which is economically favourable.

A way to mount the cameras, telescope and electronic boxes in the satellite is shown
in ­ gure 4a. The problem is how to design a support structure that weighs less than
12 kg, yet is strong enough to carry the instruments during launch. Furthermore,
it should be possible to attach two hooks to the top of the structure for ground
handling.

The design problem is very well suited for topology optimization. The design
domain is a box-like structure in which material can be distributed everywhere,
except for the space taken up by the instruments. The structure is supported by a
circular ring attached to the launch rocket, and the main load case comes from the
15g acceleration force experienced during launch. Two other load cases simulate the
sideways vibrations and a fourth load case simulates the ground handling. Finally,
the resonance frequency of the whole satellite should be higher than 35 Hz.

The design domain is discretized using 288 000 cubic ­ nite elements. The optimal
design is shown in ­ gure 4b. The computation took two days on a powerful worksta-
tion. It is evident that the structure is truss-like and supports all the instruments.
Another view of the satellite structure with instruments is shown in ­ gure 4c. The
structure requires some post-processing.
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4. Design of materials

Any material is a structure if you look at it through a microscope with
su¯ cient magni­ cation.

This statement describes the philosophy behind the application of the topology-
optimization method to the design of extremal materials.

Any material, be it foam, wood, bone or metal, has a microstructure if looked at
through a microscope. The topology of the microstructure and the material compo-
sition determines the properties of the material, so why not use a method that was
originally intended for the design of large-scale structures for the design of mate-
rial microstructures to obtain materials with optimal properties? Through topology
optimization of material microstructures, one can tailor new materials with improved
properties, and, as will be shown in this section, materials with extreme or counter-
intuitive properties.

Many materials have a periodic microstructure. An example is honeycomb material
that consists of a repeated pattern of hexagonal cells. The mechanical behaviour of
a honeycomb material can be analysed by studying just one of its cells, the base cell.
The base cell is the smallest repetitive unit of the material. If the topology of the
base cell is changed, the properties of the whole material will change. In the same
way, material with optimal properties can be obtained by optimizing the topology
of the base cell.

As for the topology optimization of large-scale structures, the topology of mate-
rial microstructures is initiated by discretizing the base cell by ­ nite elements and
analysing the properties by ­ nite-element analysis. In the material-design case, the
base cell is tensionally loaded in di¬erent directions to ­ nd the sti¬ness and other
properties of the material. Again, based on the sensitivity analysis, the optimization
module determines the redistribution of material that will optimize the objective
function.

To demonstrate the e¬ect of material design, the aeroplane ®oor support beam
from ­ gure 2 is revisited. Instead of having the density of material in each element
as a design variable, the material microstructure in each element is now a design
variable. This means that the microstructure should be optimized for each point in
the structure. This will result in a very sti¬ beam but also in a beam that will be
very costly to manufacture.

The result of the optimization process is shown in ­ gure 5a. The optimal beam
now consists of regions with solid material (black) and regions with porous (grey),
topology-optimized microstructures. The optimal beam is 10% lighter than the beam
from ­ gure 2d, but it is more di¯ cult and more expensive to manufacture and control
cables for the aeroplane cannot be led through it.

Nature also uses the principle of optimizing the point-wise material properties of
structures. If a human bone is cut in two halves, it can be observed that the outer
parts of the bone consist of almost solid bone, whereas the inner parts of the bone
consist of porous microstructures (see ­ gure 5b).

The study of bone structures and bone adaption is part of the research area called
biomechanics. Many methods used in the study of bone evolution can be directly
applied to structural optimization and vice versa. However, the exact connection
between bone evolution and applied loads has not yet been discovered; apparently,

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


220 O. Sigmund

periodic microstructure topology optimized base cellsolid aluminum

cross-section of human bone (from Gibson & Ashby1988)

airplane floor support beam with optimized microstructure

almost solid
bone material

o

porous bone microstructure
(scanned by Anders Odgaard)

(a)

(b)

Figure 5. Design of the optimal beam. (a) The optimal beam consists of regions with solid mate-
rial (black regions) and regions with topology-optimized porous microstructures (grey regions).
(b) A cross-section of a human bone shows that the bone structure has solid and porous regions
as well.

the physics of the human body is (still) more complex than an aeroplane ®oor support
beam.

(a) Design of a negative Poisson’s ratio material

All naturally occurring materials shrink transversally when pulled. Imagine a rub-
ber band: the more you pull it, the thinner it gets. The ratio between the transversal
shrinking and the longitudinal elongation is called Poisson’s ratio. The Poisson’s
ratios of all naturally occurring materials are positive, which means that they shrink
when pulled.

Is it possible to build a material with negative Poisson’s ratio, which means that
it gets fatter when pulled? Intuition probably tells us no, but in fact topology opti-
mization has the answer and it is ā rmative!

Using the material topology-optimization algorithm to minimize the Poisson’s ratio
of the material results in a microstructure as seen in ­ gure 6a. The material has
negative Poisson’s ratio. The mechanism behind this counter-intuitive behaviour is
that it `unfolds’ when pulled, as illustrated in ­ gure 6b.
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(a)
(b)

(c)

100 m m

Figure 6. Design of a material with negative Poisson’ s ratio. (a) Topology-optimized base cell
with negative Poisson’ s ratio. (b) Elongation of negative Poisson’ s ratio test beam; note that
it becomes fatter when pulled (the dashed background lines show the undeformed structure).
(c) Micromachined testbeam fabricated at the Microelectronics Centre (MIC), Technical Uni-
versity of Denmark (length 1 mm).

An obvious question is: what is a negative Poisson’s ratio material good for? There
are many answers to this question but one of the best applications is for fasteners.
It is easy to push a fastener made of a negative Poisson’s ratio material into the wall
since it gets slimmer when pushed in. On the other hand, once it is in the wall it is
di¯ cult to pull out since it expands when pulled.

A test beam made from the negative Poisson’s ratio material was built using laser-
micromachining techniques at the Microelectronics Centre (MIC) at the Technical
University of Denmark (DTU). A scanning electron micrograph of the beam is shown
in ­ gure 6c. The beam is 1 mm long and each cell is 50 m square. It is impossible to
see the microstructure with the naked eye, so the beam was tested using a microprobe
and the response was measured with a microscope. The Poisson’s ratio was measured
to be 0:9, close to the theoretically predicted value.

(b) Design of a material with negative thermal-expansion coe± cient

Another example of a material with `exotic’ properties is a material with a nega-
tive thermal-expansion coe¯ cient. Most naturally occurring materials have positive
thermal-expansion coe¯ cients, which means that they expand when heated. Imag-
ine for example a railroad track. In extremely warm weather the railroad track
may expand so much that it bends into an S-shape and the train derails. The
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high thermal expansion coefficient

low thermal expansion coefficient

high thermal expansion coefficient

(a)

(b)

bi-material beam heated bi-material beam

air

base cell heated negative thermal expansion material

Figure 7. Design of a material with negative thermal-expansion coe± cient. (a) The bi-material
principle; and (b) topology-optimized two-material microstructure that contracts when heated
(the dashed lines denote the undeformed structure).

phenomenon is also found in bridges, where the length can vary several metres
between summer and winter and special length equalization segments have to be
constructed to prevent gaps from appearing in the bridge. Thermal expansion is
also a big problem in space. The temperature di¬erence between the sunny and the
shady side of a space structure may be several hundred degrees, and this may cause
large space antennas to distort and thereby lose their ability to send and receive
signals.

Because of all these problems with thermal expansion due to temperature changes
it would be nice to have access to materials with either zero thermal-expansion coe¯ -
cients or materials with negative thermal-expansion coe¯ cients that could neutralize
the positive expansion of normal materials.

In order to design a material with negative thermal-expansion coe¯ cient one can
make use of the bi-material e® ect. If one makes a sandwich beam of two materials
with di¬erent thermal-expansion coe¯ cients, the beam will bend towards the side
with the lower thermal-expansion coe¯ cient when heated. The principle is illustrated
in ­ gure 7a.

The material topology-optimization algorithm is now modi­ ed to include the dis-
tribution of two di¬erent material phases in the base cell, as shown in ­ gure 7b. The
red phase has a high thermal-expansion coe¯ cient and the blue phase has a low
(but still positive) thermal-expansion coe¯ cient. Minimizing the e¬ective thermal-
expansion coe¯ cient of the microstructure, one obtains the topology shown in ­ g-
ure 7b. The resulting microstructure has a negative thermal-expansion coe¯ cient.
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(a)

(b)

(d)(c)

scanning head

iteration 1 iteration 5

iteration 10 iteration 20

iteration 50 iteration 150

iteration 250 optimal topology

100 m m

20 °C 300 °C

Figure 8. Design of a microscopic two-degrees-of-freedom actuator. (a) De¯nition of the design
domain and electric load conditions; (b) iteration history; (c) simulation of the heat distribution
and displacement of the optimized actuator; and (d) micromachined actuator fabricated at MIC,
DTU.

Studying the optimal topology, one notices that the microstructure consists of sev-
eral small bi-material beams that, in an intricate way, make the periodic structure
contract when heated, even though the materials it is built from expand when heated
(see ­ gure 7).

5. Design of micro-robots

A new application of the topology-optimization method is in the design of MicroElec-
troMechanical systems (MEMSs). These are microscopic mechanical devices coupled
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with electronic circuits. The small size of MEMSs give them several advantages over
conventional-size mechatronic systems. For example, MEMSs can be used as ®ow
sensors, which, due to their small size, do not interrupt the ®ow. They can also be
used to remove blood clots inside the human body, and as hearing aids so small that
they can be implanted in the ear.

MEMSs are manufactured using etching and deposition processes known from the
semiconductor industry. The base material is a silicon chip. On top of the silicon chip,
di¬erent materials can be deposited. An outline of the mechanical device is etched
in the top layer. Using the top layer as a mask, other etching agents are used to etch
through lower-lying layers and ­ nally another etching agent releases the device from
the silicon chip. By varying the processes, quite complex mechanical devices can be
built and integrated with electronic circuits on the same chip.

The small size and the manufacturing techniques for MEMSs do not allow for
assembly processes, hinges and bearings, known from conventional-size mechanical
systems. MEMSs must be etched out of one piece of material. The mobility of the
mechanical systems must therefore come from bending in parts of the structures.
Mechanisms that gain their mobility from bending are called compliant mechanisms.
Design of compliant mechanisms is a complicated task, but it can be e¯ ciently solved
using the topology-optimization method.

In the following, the design of a microscopic two-degrees-of-freedom actuator will
be used to demonstrate the application of the topology-optimization method to
MEMS design.

As a future application of MEMSs, researchers are developing techniques to store
information by moving atoms from one position to another on a microchip. In this
way, it will be possible to store information that currently requires a large hard disk
on a few square millimetres. To write and read from this small area, a microscopic
pickup must be moved over the surface by a miniature robot arm. Two di¬erent
electrical inputs to the robot should move it in two directions over the surface. The
design problem thus consists of converting two independent electrical signals into
two independent mechanical outputs.

Di¬erent actuation principles can be thought of but one of the simplest, and
the one that will be used here, is the actuation by Joule heating of the robot.
The principle of Joule heating is the following: if an electric ­ eld is applied over
a piece of metal, it will heat up due to the electrical resistance. When the metal is
heated, it will expand due to the positive thermal-expansion coe¯ cient. The expan-
sion gives the desired actuation. Unfortunately, the expansion due to Joule heating
is quite small. However, the topology-optimization method can be used to amplify
the expansion, and, at the same time, obtain the desired two-degrees-of-freedom
output.

The design domain for the actuator is shown in ­ gure 8a. The red electrical input
must result in a horizontal movement of the output point, and the green electrical
input must result in a vertical movement of the output point. The ­ nite-element
analysis of the actuator response now involves the simulation of the electric, thermal
and elastic behaviour of the structure. However, the optimization process is the same
as before. The evolution of the robot is illustrated in ­ gure 8b. The output from the
electrothermomechanical ­ nite-element simulation of the robot is shown in ­ gure 8c.
It is seen that the red electrical input heats up the left part of the robot and makes
it move horizontally. Equivalently, the green electric input heats up the centre part
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of the robot, and, due to an o¬set, the thermal expansion makes the output point
move in the vertical direction.

The micro-robot has been built and tested at MIC, DTU. An electron micro-
graph of the tested device is shown in ­ gure 8d. Note the size|the dimensions are
500 400 m2 and the thickness is 20 m|the robot is small enough to be mounted
on the head of a pin!

6. Perspectives

This paper has described a relatively new computational method called topology
optimization. Examples of its application to structural design, material design and
microscopic-robot design have been given. The examples, however, only cover a few
of the exciting applications of the method, some of which remain to be explored.
It is easy to imagine that in the future, the method will be applied to every design
problem where the use of material is limited and the response should be optimized.
Using the topology-optimization method as a tool in the design process, engineers
can also save considerable time and reduce costs in the prototyping process, which
are both important factors in a competitive industry.

The reception of topology-optimized structures has not always been favourable.
When it was ­ rst introduced more than a decade ago, the technique met with scep-
ticism: the optimal topologies were said to be too costly to manufacture, or, worse
still, not possible to manufacture at all. Meanwhile, manufacturing methods have
caught up with the theory and made it possible to manufacture even very complex
geometries using computer-controlled milling machines, stereolithography methods
and laser micro-machining processes.

Taking the latest advances in topology optimization and manufacturing methods
into account, the day is not far o¬ when the engineer can specify the loading and
working conditions of a structure and have a working prototype ­ nished in a matter of
hours, or when the engineer prints a block of custom-designed material with tailored
thermoelastic properties on his desktop solid free-form processor.

Further reading

In the last decade, several hundred papers have appeared on the topic of topology
optimization. The reader is referred to a book by Bends½e (1995) and the references
therein. Selected papers and books (see, for example, Gibson & Ashby 1988; Sigmund
1997; Sigmund & Torquato 1996) with more details on the topics covered in this
article are listed in the References.

This work was supported by the Danish Technical Research Council through the THOR/Talent
project D̀esign of MEMS’ .
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